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a b s t r a c t

A rotor system in rubbing is shown to exhibit complex phenomena including higher

subharmonic oscillation, period-doubling bifurcation and chaotic motions due to its

strongly nonlinear dynamic characteristics. This study introduces an alternative

Poincaré section method to analyze the dynamic behavior of a rotor in rubbing. This

response integration for analyzing high-order harmonic and chaotic responses is used to

integrate the distance between state trajectory and the origin in the phase plane during

a specific period. This integration process is based on the fact that the integration value

would be constant if the integration interval is equal to the response period. It provides

a quantitative characterization of system responses and can assist the role of the

traditional stroboscopic technique (Poincaré section method) to observe bifurcations

and chaos of the nonlinear oscillators. For a rubbing rotor the response composes of

multiple high-order harmonic motions or chaos with extreme contamination, which

cannot be easily to be distinguished either from orbit plot or from Poincaré map.

Combining the capability of precisely identifying period and constructing bifurcation

diagrams, the advantages of the proposed method are shown by simulations.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Considering the needs of high rotating speed and high efficiency in the modern machines, the decreasing clearance
between the rotor and the stator is a necessary design. The Rub-impact between rotor and stator can be one of
the main malfunctions which often occur in rotating machinery. It is mainly resulted from the mass imbalance, turbine,
compressor blade failure, defective bearing, or rotor misalignment. A faulty rotor is generally associated with a vibrating
system having complicated nonlinear behavior. Regarding some types of faults, the vibration of system contains a very
complicated phenomenon including not only the periodic motion but also the chaotic motion. In the rotor systems
with different types of faults, a detailed investigation on various forms of vibrations is of great importance to establish a
reliable diagnosis system for the rotating machinery. When a rub-impact happens, the partial rub arises at first. During a
complete period, the rub and impact interactions occur between the rotor and stator once or fewer times. Gradual
deterioration of the partial rub will lead to the full rub and then the vibration will affect the normal operation of the
machines severely.

The majority of works was focused on the development of some mathematical models; this is in order to make the
rubbing phenomenon more accurately to be understood in the past few decades. A rotor system with rub-impact is
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Nomenclature

K nondimensional stiffness ratio; K ¼ k/ks

FN, FT radial impact, tangential rubbing forces
Fx, Fy rub-impacting force in the x and y directions
O geometric center of end bearing
OS center of the stator
PT response integration value for T (T ¼ 2p/O)
PnT response integration value for nT

R nondimensional radial displacement of the
rotor; R ¼ r/d

U nondimensional imbalance; U ¼ mu/Md
X nondimensional displacement of the rotor in

the horizontal direction; X ¼ x/d
Y nondimensional displacement of the rotor in

the horizontal direction; Y ¼ y/d
O nondimensional rotating speed of the rotor;

O ¼ o/on

DX initial horizontal eccentric ratio; DX ¼ Dx/d
DY initial vertical eccentric ratio; DY ¼ Dy/d
c damping of the shaft
k stiffness of the shaft
ks stiffness of the stator
r radial displacement of the rotor
tc nondimensional arbitrary extraction time
x displacement of the rotor in the horizontal

direction
y displacement of the rotor in the vertical

direction
d radial clearance between rotor and stator
m friction coefficient between rotor and stator
t nondimensional time; t ¼ ont

o rotating speed of the rotor
on natural frequency of the rotor; on ¼

ffiffiffiffiffiffiffiffiffiffi
k=M

p
x non-dimensional damping of the rotor; x ¼

c=2
ffiffiffiffiffiffiffi
kM
p
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considered as importance in several of practical engineering fields. There have been numerous publications launched on
this topic. In particular, Childs [1,2], Beatty [3], Choy [4] and Choi [5] paid attention to the dynamic phenomena in rotating
machinery with rotor-to-stator contact.

Beatty [3] proposed a mathematical model for rubbing forces and a detailed response format of diagnostic data in actual
cases. The model is still applied widely today. A comprehensive investigation on the dynamic characteristics exhibited by
this kind of system is necessary in order to diagnose this fault. Choy [4] performed a very interesting theoretical
investigation to observe the effects of casing stiffness, friction coefficient, imbalance load, system damping on rub force
history, and the transient response of rotor orbit; but only periodic vibration was discussed. Choi [5] examined the complex
dynamic behavior of a simple horizontal Jeffcott rotor with bearing clearances. Numerical results have revealed the
alternating periodic. He proposed a numerical method which combined the harmonic balance method with discrete
Fourier transformation and inverse discrete Fourier transformation. Their numerical results show the occurrence of super
and subharmonics located in a rotor model involved a bearing clearance.

Ehrich [6,7] addressed the subject of higher subharmonic response for high-speed rotor in bearing clearance. He used a
modified Jeffcott model to analyze the subharmonic vibration and also performed a series of numerical simulations
under various conditions of rotating speed, damping and stiffness ratio in order to examine the behavior of the system.
He concluded that the sub-critical super-harmonic response is the exact opposite of the super-critical subharmonic
response. Goldman [8,9] applied an analytical approach associated with the numerical calculation to study the
phenomenon with supercritical subharmonic for a rotor system with clearance. The results showed regular periodic
vibrations of synchronous and subharmonic order, as well as chaotic vibration patterns of the rotor, all accompanied by
higher harmonic motion. Chu [10,11] performed a numerical investigation to observe periodic, quasi-periodic and
chaotic motions in a rub-impact rotor system which is supported on the oil film bearings. Routes into and out of chaos
were analyzed. They discussed a nonlinear vibration of the Jeffcott rotor system which includes a nonlinear rub-impact
forces resulted from the eccentric rotation of rotor. The analytical expression of the stable periodic solution is obtained
by using the Fourier serious expansion method. They found that whenever the rub-impact occurs, three kinds of routes
into the chaos will arise as the rotating speed increases. Through a period of doubling bifurcation, these phenomena
from a stable periodic motion graze bifurcation as a chaos, and then a sudden transition happened between the periodic
vibration and chaos.

Edwards [12] investigated the torsion effect included in a contacting rotor-stator system. They also examined the
system’s response regarding the torsional stiffness, and concluded that torsion has a substantial effect on system response.
Feng [13] discussed the vibration phenomena in rotor-stator contact which is caused by an initial perturbation. The
perturbation is an instantaneous change of the radial velocity when the rotor is rotating in its normal steady state. Being
under certain conditions, they found that the rotor will remain rubbing with the stator, even if the initial perturbation no
longer exists.

The dynamic behavior of rotor system with rubbing was investigated by several researchers. The published literatures
have mainly qualitative characters. In the present study, to the author’s knowledge, the quantitative observation for the
high-order harmonic and chaotic responses of a rubbing rotor system has not been studied in the literature. The integration
algorithm is proposed to analyze the responses of the rotor system with rub-impact. With applying this method, this is able
to assist the role of Poincaré section points in the process of constructing bifurcation diagram. Some case simulations are
given here to illustrate its effectiveness and convenience.
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2. Rotor model and motion equation

The model utilized in this work is based on a Jeffcott rotor as shown in Fig. 1. It is assumed that a rotor mounted on a
flexible, isotropic shaft and simply supported by bearings at both ends. The weight of the rotor and shaft acts as a
gravitational force which is supported by bearing force due to its stationary eccentricity. The force equilibrium of rotor in
whirling with rub-impact is shown in Fig. 2. Os is the center of the stator and O is the geometric center of end bearing.

An initial clearance of d is installed between rotor and stator. When rubbing between rotor and stator occurs
occasionally, the elastic impact must be induced. Also, Coulomb friction between both contact surfaces is assumed. The
radial component due to impact is denoted by FN and the tangential component due to friction is denoted by FT which can
be determined by

FN ¼
0 ðr � dÞo0

ksðr � dÞ ðr � dÞ � 0

(
(1a)

and

FT ¼ mFN (1b)

where ks is the stiffness of the stator; m is the friction coefficient between rotor and stator, r is the radial displacement of

the rotor which can be expressed as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� DxÞ2 þ ðy� DyÞ2

q
. Dx and Dy are the initial eccentric distances in x and y

directions. It indicates that whenever the radial displacement of rotor is smaller than the static clearance between rotor
and stator, there will be no rub-impact; and the rub-impacting forces will be absent.
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Fig. 1. Schematic of the rotor with damping and stiffness.
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Fig. 2. Rub-impacting rotor system.
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The above normal and tangential forces can be transformed in both x and y directions to give two forces Fxðx; yÞ and
Fyðx; yÞ as follows:

Fxðx; yÞ ¼ �FN cos fþ FT sin f
Fyðx; yÞ ¼ �FN sin f� FT cos f

(
(2)

or

Fx

Fy

" #
¼

ksðr � dÞ
r

�1 m
�m �1

" #
ðx� DxÞ

ðy� DyÞ

" #
Hðr � dÞ (3)

where

Hðr � dÞ ¼
0 ðr � dÞo0

1 ðr � dÞ � 0

(

cos f ¼ ðx� DxÞ=r and sin f ¼ ðy�DyÞ=r .
The differential motion equations for the rotor with rub-impact can be described in x�y coordinates as

M €xþ c _xþ kx ¼ muo2 cosðotÞ þ Fx (4a)

M €yþ c _yþ ky ¼ muo2 sinðotÞ þ Fy (4b)

where M is the mass of shaft and rotor, c and k are the damping and the stiffness of the shaft, respectively, o is the rotating
speed.

The equations of motion were nondimensionalized in order to transform the system into the dimensionless domain, in
which the responses of different physical systems can be conveniently compared. The dimensionless variables and
parameters are as follows:

X ¼ x=d; Y ¼ y=d; on ¼

ffiffiffiffiffiffiffiffiffiffi
k=M

q
; O ¼ o=on; t ¼ ont; x ¼ c=2

ffiffiffiffiffiffiffiffi
kM
p

U ¼ mu=Md; K ¼ k=ks; R ¼ r=d

Then, the dimensionless motion equations of the rub-impacting rotor system can be expressed as

X00 þ 2xX0 þ X ¼ UO2 cosðOtÞ � ð1=KÞð1� 1=RÞfX � mYgHðR� 1Þ (5)

Y 00 þ 2xY 0 þ Y ¼ UO2 sinðOtÞ � ð1=KÞð1� 1=RÞðmX þ YÞHðR� 1Þ (6)

where the prime indicates the time derivative with respect to t and

HðR� 1Þ ¼
0 ðR� 1Þo0

1 ðR� 1Þ � 0

(

If no rubbing occurs (Ro1), the governing equations of motion can be formulated as

X00 þ 2xX0 þ X ¼ UO2 cosðOtÞ (7)

Y 00 þ 2xY 0 þ Y ¼ UO2 sinðOtÞ (8)

It indicates that whenever the radial displacement of rotor is smaller than the static clearance between rotor and stator,
there will be no rub-impact; and the rub-impacting forces will be absent.

3. Method of integration algorithm

An algorithm, denoted by PnT , was defined by integrating the distance of rotor trajectories and the origin in phase plane
as can be expressed by

PnT ðtcÞ ¼

Z tcþnT

tc

ð½XðtÞ�2 þ ½YðtÞ�2Þ1=2 dt (9)

where n is an integer, XðtÞ and YðtÞ are the displacement components of rotor center in X and Y directions, respectively, tc is
an initial time which is chosen arbitrarily only when the response of rotor system reaches steady state. The integration
interval nT, where the T is the period of single excitation or the smallest common multiple period of multiple excitations, is
set to be the predicted, confirmed, oscillating period. When PnT (n ¼ 1) is a constant, the system response is P�1 periodic
motion. Therefore, when the integration interval is set at nT (n is an integer larger than zero), it can be judged that the
system periodic response is P�n motion, that is, the n-th is a sub-harmonic response. Therefore, when the integration
interval is set at nT (n is an integer larger than zero), it can be judged that the system periodic response is P–n motion, that
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is, the n-th is a subharmonic response. Moreover, if the integration interval is set as the excitation period, i.e., T, the results
can be used to draw the bifurcation diagram of the rotor system. The extraction period is the same as Poincaré section
method.

When the rotor system steady response is in the integration interval nT, it is periodic motion. The response integration
algorithm is demonstrated as the following:

f ðX;YÞ ¼ f ðXðtþ nTÞ;Yðtþ nTÞÞ (10)

Note that f ðX;YÞ is the right-hand of a resultant first-order differential equation. Eq. (9) is differentiated by time tc . From
the above formula, the following is obtained:

dPnT ðtcÞ

dtc
¼ f ðXðtc þ nTÞÞ;Yðtc þ nTÞÞ � f ðXðtcÞ;YðtcÞÞ

¼ f ðXðtþ nTÞ;Yðtþ nTÞÞ � f ðXðtÞ;YðtÞÞ ¼ 0 (11)

Therefore,

PnT ðtcÞ ¼ constant (12)

It should be noted that the above procedure is structured on the basis that the integral value PnT would be constant as
opposed to varied starting times tc , if the chosen integration interval nT is equal to the response period. Another point
addressed is that the period is determined on the basis that the PnT value remains constant over tc This avoids possible
error, by measurement or computation tolerance, occurring in the process of distinguishing the geometric points of
Poincaré section in phase space. Furthermore, by utilizing the method of PnT integration mentioned above, the set of
simulated or experimental data needed to determine response period all reside in the time range ½tc ; tc þ nT þ Dtc�, the
duration of which is ðnT þDtcÞ. With the freedom to set Dtc small, the duration ðnT þ DtcÞ is less than nTs, which is usually
the time span utilized by the Poincaré section to collect data for identifying response period due to measurement or
numerical tolerance. Therefore, when limited experimental measurement data are analyzed, it is more advantageous to use
the response integration method.

4. Simulation results and analysis

Due to the strongly nonlinear characteristics of the rub-impacting rotor system, the vibration responses are quite
complicated. It is difficult to obtain the exact solutions directly. For this reason, the derived above equations of motion are
first transferred into a set of first-order differential equations. Then the equations are solved by the fourth-order
Runge–Kutta method to obtain data. During the calculation a smaller integration step has to be chosen to ensure a stable
solution and to avoid the numerical divergence at the point where derivatives of the rub-impact forces are discontinuous.

4.1. Comparisons with integration and Poincaré section methods

The rotating speed is one of the most important parameters affecting the dynamic characteristics of a rotor system.
Figs. 3–8 show the response integration value plots and Poincaré maps with various rotating speed ratios, O of 2.34, 2.368,
2.48, 2.68, 2.7925 and 2.8, respectively, where K ¼ 0:015, x ¼ 0:068, DX ¼ 0:3, DY ¼ 0:92, U ¼ 0:1, m ¼ 0:2. In the analysis
of the Poincaré section method, the extraction time equals to the external excitation period of T ¼ 2p=O. At O ¼ 2:34, there
are three isolated points in the Poincaré map as shown in Fig. 3(b). The result of the response integration method also
shows the motion to be period three as shown in Fig. 3(a). At O ¼ 2:368, due to a few Poincaré section points being too
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close, it is difficult to identify the periodic response of the sub-harmonic vibration as shown in Fig. 4(b). But from Fig. 4(a),
the response integration value plot, we can differentiate the motion clearly to be a sub-harmonic vibration with period 12.
When the rotating speed ratio is 2.48, the motion is regular and periodic as the orbit map. There is still six points in the
Poincaré map. Also, the response integration value plot, we can clearly differentiate the motion to be a sub-harmonic
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vibration with period six from Fig. 5(b). As the rotating speed ratio continues to increase; the periodic motion loses stability
and then another region of chaos appears. It is found that the response integration value never keeps constant as
continuously varying tc even with the integration interval set very large (n ¼ 23 and 25) as shown in Figs. 6(a) and 7(a). It
indicates that responses are not periodic motions. The results of the Poincaré section method also show the responses to be
chaotic motions. When the rotating speed ratio is 2.8, the chaotic motion disappears and becomes a periodic vibration
again as shown in Fig. 8(b). Similarly, it is also difficult to identify periodic responses; this is due to some Poincaré section
points being too close. But we can easily observe is that the motion is a sub-harmonic vibration with period 12 as shown in
Fig. 8(a). It can be seen that the rub-impacting rotor system represents the complex dynamic characters at different
rotating speeds obviously.

Figs. 9–12 show the Poincaré maps and response integration value plots with various initial vertical eccentric ratios of
0.70, 0.77, 0.86 and 0.95, respectively, where K ¼ 0:033, x ¼ 0:10, DX ¼ 0:5, U ¼ 0:12, m ¼ 0:2, O ¼ 2:6. In the analysis of the
Poincaré section method, the extraction time equals to the external excitation period of T ¼ 2p=o. When the vertical
eccentric ratio is 0.70, there are four points in the Poincaré map as shown in Fig. 9(b). Therefore, the system response is a
period four motion. The result is the same as the one of the response integration method as shown in Fig. 9(a).
At DY ¼ 0:77, due to a few Poincaré section points being too close, it is difficult to identify the periodic response of the
sub-harmonic vibration as shown in Fig. 10(b). But from Fig. 10(a), the response integration value plot, we can differentiate
the motion clearly to be a sub-harmonic vibration with period sixteen. As DY is increased to 0.86, it is found that the PnT

integration value never keeps constant as continuously varying tc even with the integration interval set very large as
shown in Fig. 11(a). The result of the Poincaré section method also shows the response to be chaotic motion as
shown in Fig. 11(b). When the initial vertical eccentric ratio DY reaches 0.95, the Poincaré section points appear to fill
up a closed curve as shown in Fig. 12(b). Then the motion becomes quasi-periodic. At this time, the DPnT integration
value never keeps constant as continuously varying tc even with the integration interval set very large (n ¼ 30) as shown
in Fig. 12(a).
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4.2. Bifurcation diagram of rub-impacting rotor

The bifurcation diagram is a very effective mean to reflect the motion change; the results obtained from the system
exhibiting of nonlinear behaviors may be presented. In order to compute a bifurcation diagram, a control parameter was
varied at a constant step. The initial eccentric measure of a rotor is a very important parameter which is related to the
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Fig. 13. Bifurcation diagrams with rotating speed ratio, O as the control parameter: (a) the response integration method and (b) Poincaré section method,

where K ¼ 0:034, x ¼ 0:10, DX ¼ 0:0, DY ¼ 0:9, U ¼ 0:1, and m ¼ 0:2.
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stability of rotor motion directly. In order to validate the analysis results from the response integration method,
comparisons are made with Poincaré section method. Figs. 13(a) and (b) are the bifurcation diagrams drawn with both the
response integration method and the Poincaré section method, using the rotating speed ratio as the control parameters.
The rotating speed ratio O ranges from 2.14 to 2.4 with a step of 0.0005. It can be seen that the response integration method
and the Poincaré section method almost show the same topology of the structure for the same rotor’s parameters.
Similarly, the present method is evaluated by a comparison with Poincaré section method to show the excellent agreement.
The Rotor’s imbalance plays an important part in the behavior of the system. In a turbine or compressor, the sudden loss of
blade will increase the imbalance and results in rubbing. Figs. 14(a) and (b) are the bifurcation diagrams drawn with both
the Poincaré section method and the response integration method, using the imbalance as the control parameters. Overall
the results obtained from the Poincaré section method were comparable with those from the response integration method.
These similarities validated the numerical model. As the simulated results were broadly similar to those from the response
integration method, further numerical simulations were undertaken to investigate the effect on the response of the system.
Here the effect of increasing the imbalance, from 0.065 to 0.085, is investigated. The bifurcation diagram shows that a
further increase imbalance causes the onset of subharmonic motions of various orders, interspersed with chaotic bands. At
U ¼ 0.065 a period two motion exists at first, and then at about U ¼ 0.068 the motion becomes period four. When
imbalance increases further, the response exists periodic motion and turns into chaotic motion at U ¼ 0.0705. Increasing
imbalance will result in rubbing and induce nonsynchronous responses. This feature indicates that the imbalance effect is
relatively sensitive to the dynamic responses of a rotor system.

Damping is also one of the main factors affecting dynamic characteristics of nonlinear systems. Bifurcation diagrams
shown in Fig. 15 was plotted in the form of PT integration to be as a function of the U with the variation of damping
parameter x. In the range 0:06oUo0:1, the bifurcations of the system are illustrated for damping parameters x of 0.08,
0.10, 0.12 and 0.15. As obvious from bifurcation responses shown in Fig. 15, increasing x can reduce the response amplitude
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Fig. 14. Bifurcation diagrams with imbalance ratio, U as the control parameter: (a) the response integration method and (b) Poincaré section method,

where K ¼ 0:032, DX ¼ 0:5, DY ¼ 0:8, m ¼ 0:2, and O ¼ 2:6.

Fig. 15. Effect of damping coefficient, x on the system responses of bifurcation diagrams using the response integration method, where K ¼ 0:032,

DX ¼ 0:5, DY ¼ 0:8, m ¼ 0:2, and O ¼ 2:6.
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and narrows the chaotic zone. It is further observed that as the value of x is increased from 0.08 to 0.15. The chaotic zones
gradually disappear. For the case of x ¼ 0.10, the chaotic zone in the half-right interval, i.e., 0:08oUo0:1 was also narrowed
in Fig. 15(b). For the case of x ¼ 0:15 in particular, the chaotic zones entirely disappear in Fig. 15(d). It can be seen that the
system represents the complex dynamic characters at different damping coefficients obviously. The chaotic zones gradually
disappear when the damping parameter is increased. This feature indicates that the damping effect is relatively sensitive to
the dynamic responses of a system. The effect of changing stiffness parameter is also investigated in this paper.

Bifurcation diagrams shown in Fig. 16 was plotted in the form of PT integration to be as a function of the U with various
stiffness parameters K. For a lower stiffness value of K ¼ 0.036, it is clearly seen that there are several chaotic regions occur
in the range 0:072oUo0:1. As obvious from bifurcation responses shown in Figs. 16(a)–(d), increasing K also reduces the
response amplitude and narrows the chaotic zone. It is observed that as the value of K is increased from 0.036 to 0.045, the
chaotic zones gradually decrease. When K increases further, at K ¼ 0.04 as shown in Fig. 16(c) the chaotic regions are found
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Fig. 16. Effect of stiffness coefficient, K on the system responses of bifurcation diagrams using the response integration method, where x ¼ 0:06, DX ¼ 0:5,

DY ¼ 0:8, m ¼ 0:2, O ¼ 2:6.
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to be narrowed. Then, with further variations of K, Fig. 16(d) shows that the chaotic zones disappear and the level of
vibration is lower when the stiffness is larger (at K ¼ 0.045).

5. Conclusions

To apply the effective methods to analyze and distinguish all kinds of response patterns is the major research object of
nonlinear dynamics. The dynamic equations of a rotor system with rub-impact are obtained and solved numerically. This
study proposes an integration algorithm to analyze the vibration responses of a rotor system with rub-impact. With
utilizing the integration algorithm, the response patterns of the system can be clearly and simply drawn and avoid the
misjudgment. It provides a quantitative characterization of system responses and can assist the role of the Poincaré section
method to observe bifurcations and chaos of the nonlinear system. For a high-order harmonic vibration, the system
responses will be made misjudgments due to the Poincaré section points near each other. However, when the integration
value is a fixed constant, the system response is a periodic motion which is based on the definition of the response
integration method. In this paper we have inspected the PnT integration plot and PT integration bifurcation diagram to
identify responses of a rubbing rotor system. It is more advantageous to use this method for analysis regarding limited
measuring data or numerical simulation. Applying this response integration, the effects of the change in the stiffness and
the damping coefficients on the vibration features of a rubbing rotor system are investigated. From simulation results, it
shows that the responses of a rubbing rotor exhibit very complicated types of higher subharmonic oscillation, period-
doubling bifurcation and chaotic motions.
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